
Exercise: Mixing the “Best” from both Sorts?
Recall:
• In insertion sort, costs of insertions are increasing.
• In selection sort, costs of selections are decreasing.
Idea:
• Perform insertion sort until half of the input is sorted.
• Perform selection sort to finish sorting the remaining half.
Q: Will this “new” algorithm perform better than O(n²)?

·
S

:

Singly-Linked Lists (SLL): Visual Introduction

- A chain of connected nodes (via aliasing)
- Each node contains:
 + reference to a data object
 + reference to the next node
- Head vs. Tail
- The chain may grow or shrink dynamically.
- Accessing a position in a linear collection:

+ Array uses absolute indexing: O(1)
+ SLL uses relative positioning: O(n)

A SLL Grows or Shrinks Dynamically

e.g., Inserting TOR/VAN/MON to the beginning/middle/end.

e.g., Removing LAX/ATL/BOS from the beginning/middle/end.

Runtime

Implementing SLL in Java: SinglyLinkedList vs. Node

SLL: Constructing a Chain of Nodes

Approach 1

SLL: Constructing a Chain of Nodes

Approach 2

Approach 1

SLL: Setting a List’s Head to a Chain of Nodes

dan mark tom

Node "Alan Node "Mark" Node "Tom"
C. 7 C. 7 C. 7

N N N null

Approach 2

SLL: Setting a List’s Head to a Chain of Nodes

dan mark tom

Node "Alan Node "Mark" Node "Tom"
C. 7 C. 7 C. 7

N N N null

Trace: list.getSize()
current current != null End of Iteration size

SLL Operation: Counting the Number of Nodes

Trace: list.getTail()
current current != null End of Iteration tail

SLL Operation: Finding the Tail of the List

SLL Operation: Inserting to the Front of the List

Trace: list.getNodeAt(2)
current index index < 2 Start of Iteration

SLL Operation: Accessing the Middle of the List

Idea of Inserting a Node at index i

Case: addAt(i, e), where i > 0

I-1 I

......

>
"
...

"

SLL Operation: Inserting to the Middle of the List

SLL Operation: Removing the End of the List

Exercises: insertAfter vs. insertBefore

Case: insertAfter(Node n, String e)

Case: insertBefore(Node n, String e)

N

V

... S
-...

~
- 1

...

"

sh
V

-> -...

........ ~S
1
...

"

